Monday, October 1, 2012

Domain name system


On the Internet, the Domain Name System (DNS) associates various sorts of information with so-called domain names; most importantly, it serves as the "phone book" for the Internet: it translates human-readable computer hostnames, e.g. en.wikipedia.org, into the IP addresses that networking equipment needs for delivering information. It also stores other information such as the list of mail exchange servers that accept email for a given domain. In providing a worldwide keyword-based redirection service, the Domain Name System is an essential component of contemporary Internet use.

Uses

The most basic use of DNS is to translate hostnames to IP addresses. It is in very simple terms like a phone book. For example, if you want to know the internet address of en.wikipedia.org, the Domain Name System can be used to tell you it is 66.230.200.100. DNS also has other important uses.
Pre-eminently, DNS makes it possible to assign Internet destinations to the human organization or concern they represent, independently of the physical routing hierarchy represented by the numerical IP address. Because of this, hyperlinks and Internet contact information can remain the same, whatever the current IP routing arrangements may be, and can take a human-readable form (such as "wikipedia.org") which is rather easier to remember than an IP address (such as 66.230.200.100). People take advantage of this when they recite meaningful URLs and e-mail addresses without caring how the machine will actually locate them.
The Domain Name System distributes the responsibility for assigning domain names and mapping them to IP networks by allowing an authoritative server for each domain to keep track of its own changes, avoiding the need for a central registrar to be continually consulted and updated.

Internationalized domain names

While domain names technically have no restrictions on the characters they use and can include non-ASCII characters, the same is not true for host names.[3] Host names are the names most people see and use for things like e-mail and web browsing. Host names are restricted to a small subset of the ASCII character set that includes the Roman alphabet in upper and lower case, the digits 0 through 9, the dot, and the hyphen. This prevented the representation of names and words of many languages natively. ICANN has approved the Punycode-based IDNA system, which maps Unicode strings into the valid DNS character set, as a workaround to this issue. Some registries have adopted IDNA.

Security issues

DNS was not originally designed with security in mind, and thus has a number of security issues. DNS responses are traditionally not cryptographically signed, leading to many attack possibilities; DNSSEC modifies DNS to add support for cryptographically signed responses. There are various extensions to support securing zone transfer information as well.
Even with encryption it still doesn't prevent the possibility that a DNS server could become infected with a virus (or for that matter a disgruntled employee) that would cause IP addresses of that server to be redirected to a malicious address with a long TTL. This could have far reaching impact to potentially millions of internet users if busy DNS servers cache the bad IP data. This would require manual purging of all affected DNS caches as required by the long TTL (up to 68 years).
Some domain names can spoof other, similar-looking domain names. For example, "paypal.com" and "paypa1.com" are different names, yet users may be unable to tell the difference when the user's typeface (font) does not clearly differentiate the letter l and the number 1. This problem is much more serious in systems that support internationalized domain names, since many characters that are different, from the point of view of ISO 10646, appear identical on typical computer screens.
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia.